Pre-class Warm-up!!!

Which of the following systems of equations is equivalent to the 2 nd order equation

$$
x^{\prime \prime}-3 x^{\prime}+2 x=0 ?
$$

$\sqrt{\text { a. }}\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{rr}0 & 1 \\ -2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
b. $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
c. $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{cc}-3 & 2 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
d. None of the above.

Another one: what is the Wronskian of

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{3 t} \text { and }\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-t} ?
$$

a. $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] e^{2 t}$
b. $-2 e^{-3 t}$
J. $-2 e^{2 t}$
d. $\left[\begin{array}{l}2 \\ 0\end{array}\right]\left(e^{3 t}+e^{-t}\right)$

Section 7.3: the eigenvalue method for linear systems
We learn:

- how to solve homogeneous first order linear systems with constant coefficients using eigenvalues and eigenvectors

Page 395 question 1.
Solve $\begin{aligned} & x_{1}^{\prime}=x_{1}+2 x_{2} \\ & x_{2}^{\prime}=2 x_{1}+x_{2}\end{aligned} \quad\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
Solution. Find the e-value and e-vectars of $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Char, poly. $\operatorname{det}\left[\begin{array}{cc}1-\lambda & 2 \\ 2 & 1-\lambda\end{array}\right]$ $=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)$
The e-vector for $\lambda=3$. Null $\left.\left(\begin{array}{cc}1-3 & 2 \\ 2 & 1-3\end{array}\right]\right)$ $=\operatorname{Null}\left[\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right]$ hat basis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
The e-vector for $\delta=1=\operatorname{Null}\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ hap basis $\left.\left[\begin{array}{c}1 \\ -1\end{array}\right]\right]$

The general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-t}
$$

Why does this work?
If v is an e-vector with e-value, λ then $A v=\lambda v$.
Thus $x=v e^{\lambda t}$ has

$$
\underline{x}^{\prime}=\lambda v e^{\lambda t}=A v e^{\lambda t}=A x
$$

Another one:
Knowing that $P \wedge-1 A P=D$ where

$$
A=\left[\begin{array}{rr}
-5 & -14 \\
3 & 8
\end{array}\right] \quad P=\left[\begin{array}{rr}
7 & 2 \\
-3 & -1
\end{array}\right] \quad D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

solve the system

$$
\begin{aligned}
& x_{1}^{\prime}=-5 x_{1}-14 x_{2} \\
& x_{2}^{\prime}=3 x_{1}+8 x_{2}
\end{aligned}
$$

Which of the following are solutions?
a. $\left[\begin{array}{c}7 e^{t} \\ -3 e^{2 t}\end{array}\right]$ and $\left[\begin{array}{c}2 e^{2 t} \\ -e^{t}\end{array}\right]$
b. $\left[\begin{array}{c}-5 \\ 3\end{array}\right] e^{t}$ and $\left[\begin{array}{c}-14 \\ 8\end{array}\right] e^{2 t}$
/c. $\left[\begin{array}{r}7 \\ -3\end{array}\right] e^{t}$ and $\left[\begin{array}{r}2 \\ -1\end{array}\right] e^{2 t}$

Page 395 question 13.
Find the general solution to

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
5 & -9 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
x_{1}^{\prime}=5 x_{1}-9 x_{2}
$$

Solution. Char.joly $\operatorname{det}\left[\begin{array}{cc}5-\lambda & -9 \\ 2 & -1-\lambda\end{array}\right]$

$$
\begin{aligned}
& =\lambda^{2}-4 \lambda-5+18=\lambda^{2}-4 \lambda+13 \\
& \lambda=\frac{4 \pm \sqrt{16-52}}{2}=\frac{4 \pm \sqrt{-36}}{2}=2 \pm 3 i
\end{aligned}
$$

The envector for $2+3 i$:
$\operatorname{NalL}\left[\begin{array}{cc}3-3 i & -9 \\ 2 & -3-3 i\end{array}\right] \quad \begin{aligned} & \text { Note }(3-3 i)(3+3 i) \\ &=9+9=18\end{aligned}$
(2) $\rightarrow \frac{3+3 i}{9}(1)+(2)\left[\begin{array}{cc}3-3 i & -9 \\ 0 & 0\end{array}\right]$

Nullspace has basis $\left[\begin{array}{c}3+3 i \\ 2\end{array}\right]$

The other e-vector for $x=2-3 i$ is the complex conjugate of the first e-vectar:

$$
\left[\begin{array}{c}
3-3 i \\
2
\end{array}\right]
$$

General solution: $A\left[\begin{array}{c}3+3 i \\ 2\end{array}\right] e^{(2+3) t}+B\binom{3-3 i}{2} e^{(23 i)}$

$$
\begin{array}{r}
{\left[\begin{array}{c}
3+3 i \\
2
\end{array}\right] e^{2 t}(\cos 3 t+i \sin 3 t)=e^{2 t}\left[\begin{array}{c}
3 \cos 3 t-3 \sin 3 t \\
2 \cos 3 t
\end{array}\right]} \\
+i e^{2 t}\left[\begin{array}{c}
3 \sin 3 t+3 \cos 3 t \\
2 \sin 3 t
\end{array}\right]
\end{array}
$$

is a solution. So is its complex conjugate
$[($ This solution $)+\overline{(\text { This solution })}] / 2$
$=e^{2 t\left[\begin{array}{c}3 \cos 3 t-3 \sin 3 t \\ 2 \cos 3 t\end{array}\right]}$
(This soln) - $-\frac{2 \cos 3 t}{(t h i s \text { son })} / 2 i=e^{2 t}\left[\begin{array}{l}3 \sin 3 t+3 \cos 3 t \\ 2 \sin 3 t\end{array}\right]$
General solution $e^{2 t}\left(C_{1}\left[\begin{array}{cc}3 \cos 3 t-3 \sin 3 t \\ 2 \cos 3 t\end{array}\right]+c_{2}\left[\begin{array}{c}3 \sin 3 t+3 \cos 3 \\ 2 \sin 3 t\end{array}\right]\right.$

Page 395 question 13.
Find the general solution to

$$
x_{1}^{\prime}=5 x_{1}-9 x_{2}
$$

$$
x_{2}^{\prime}=2 x_{1}-x_{2}
$$

Solution: find the eigenvalues.
The characteristic polynomial is
$\operatorname{det}\left[\begin{array}{cc}5-\lambda & -9 \\ 2 & -1-\lambda\end{array}\right]=\lambda^{2}-4 \lambda-5+18=\lambda^{2}-4 \lambda+13$

$$
\lambda=\frac{4 \pm \sqrt{16-52}}{2}=\frac{4 \pm \sqrt{-36}}{2}=2 \pm 3 i
$$

Eigenvectors: for $\lambda=2+3 i$ we want a basis for the nullspace of

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3-3 i & -9 \\
2 & -3-3 i
\end{array}\right] \quad \text { Note }(3-3 i)(3+3 i)=18} \\
& \xrightarrow{(2) \rightarrow(2)} \frac{(3+3 i)}{9}(1)
\end{aligned}\left[\begin{array}{cc}
3-3 i & -9 \\
0 & 0
\end{array}\right] \$ \$
$$

The nullspace hos bairs $\left[\begin{array}{c}3(1+i) \\ 2\end{array}\right]$

The complex corpugcte $\lambda=2-3 i$ has eigenvector $\left[\begin{array}{c}3(1-i) \\ 2\end{array}\right]$
We get solutions $\left[\begin{array}{c}3+3 i \\ 2\end{array}\right] e^{(2+3 i) t}$

$$
\begin{aligned}
& =e^{2 t}(\cos 3 t+i \sin 3 t)\left[\begin{array}{c}
3+3 i \\
2
\end{array}\right] \\
& =e^{2 t}\left(\left[\begin{array}{c}
3 \cos 3 t-3 \sin 3 t \\
2 \cos 3 t
\end{array}\right]+i\left[\begin{array}{c}
3 \cos 3 t+3 \sin 3 t \\
2 \sin 3 t
\end{array}\right]\right)
\end{aligned}
$$

and the complex congergate
same... -i same
Add and $\div 2$ or subtract and $\div 2 i$ to get soluting

$$
e^{2 t}\left[\begin{array}{c}
3 \cos 3 t-3 \sin 3 t \\
2 \cos 3 t
\end{array}\right] \text { and } e^{2 t}\left[\begin{array}{c}
3 \cos 3 t+3 \sin 3 t \\
2 \sin 3 t
\end{array}\right]
$$

Question:
Consider a system $x^{\prime}=A x$ where A has an eigenvector $\left[\begin{array}{c}1 \\ 2-i\end{array}\right]$ with eigenvalue $\lambda=1+3 i$

1. Which of the following must also be an eigenvalue?
a. $3+\mathrm{i}$
b. $1-3 \mathrm{i}$
c. $-1+3 \mathrm{i}$
2. Which of the following must also be an eigenvector?
a. $\left[\begin{array}{c}1 \\ 1+3 i\end{array}\right]$
b. $\left[\begin{array}{c}1 \\ 2+i\end{array}\right]$
c. $\left[\begin{array}{c}2-i \\ 1\end{array}\right]$
d. $\left[\begin{array}{c}2-i \\ 5\end{array}\right]$
3. Which of the following are solutions?
a. $e^{t}\left[\begin{array}{l}\cos 3 t+i \sin 3 t \\ 2 \cos 3 t+\sin 3 t+i(2 \sin 3 t-\cos 3 t)\end{array}\right]$
b. $e^{t}\left[\begin{array}{l}\cos 3 t+i \sin 3 t \\ 2 \cos 3 t+i \sin 3 t\end{array}\right]$
4. Which of the following are solutions?
a. $e^{t}\left[\begin{array}{c}\cos 3 t \\ 2 \sin 3 t\end{array}\right]$
b. $e^{t}\left[\begin{array}{l}\cos 3 t \\ 2 \cos 3 t+\sin 3 t\end{array}\right]$
